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1. INTRODUCTION

The nonlinear transient analysis of structures is a particularly

promising field for adaptive procedures, because, among the various classes

of structural finite element applications, it is computationally the most

demanding. It is not uncommon for simulations of crashes of automobiles or

aircraft to require 10 to 20 hours of CRAY time. Furthermore, in this class

of applications, a priori selection of an appropriately refined mesh is most

difficult, since the areas of the mesh which need to be refined depend on

the evolution of the response, which cannot be foreseen by the analyst.

Thus, while expert systems may prove to be quite effective in helping a user

design appropriate meshes for linear-elastic, static problems, it is not

possible in a typical nonlinear transient problem, such as the simulation of

a high-energy deposition on a missile nose or a front-end crash of an

automobile. In this type of analysis, the computational power must be

focused on those parts of the mesh which undergo the most severe

deformation, such as hinging and wrinkling, and the sites of such

deformations are not determinable a priori. Furthermore, it is desirable to

start various types of simulations, such as a frontal and side crash, with

the same mesh and let the response dictate any refinement.

While nonlinear transient analysis is one of the most promising areas

for adaptive procedures, it is also the most challenging. Perusal of

reviews of the field of adaptive finite elements recently written by Noor

and Babuska (1987) and Oden and Demkowicz (1988) reveals that the bulk of

the theoretical work has been devoted to determining local error estimates

for linear static problems; these estimates are used to select the elements

or subdomains to be refined. These error estimates have evolved into two

main types:
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1. residual error criteria based on the magnitude of the residual

in the governing equations;

2. error indicators based on interpolation methods.

A difficulty in applying these methods to shells is that in the most

effective elements for shell analysis, namely bilinear quadrilateral

elements such as described in Belytschko, Lin, and Tsay (1984) and in

Hallquist and Benson (1986), even the shape of the shell is not adequately

represented. In other words, while the momentum residual in the equations

of motion for the bilinear description of the shell may be small, the errors

may be quite large due to discrepancies between the configuration of the

shell surface and the bilinear finite element representation.

However, this drawback provides an opportunity, for in fact it is in

the regions of maximal deviation between the bilinear representation and the

shell surface that the finite element mesh is most inadequate. Since an

average normal to the shell surface can be estimated at all times, the

deviation of the bilinear representation from a more accurate approximation

to the shell surface can be computed and used to indicate where mesh

refinement will prove useful. In fact, the deviation of a bilinear element

from a smooth shell midsurface can be related to the angle between adjacent

elements.

The regions where the largest angles occur between adjacent elements

ar- not the only regions which require refinement. Three other sources of

important errors in shells treated by bilinear shell elements with hourglass

control are regions where:

1. high gradients of membrane stresses occur;

2. significant amounts of energy are dissipated in the hourglass

modes;
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3. high uniform compressive strains lead to the possibility of

buckling.

Adaptive methods can be used to achieve two distinct but related goals:

1. to achieve a given level of accuracy without regard to

computer resources;

2. to achieve the best solution with a specified amount of

computer resources.

We have chosen the second goal. This choice is based on two reasons:

1. It is impossible at this time, with the available mathematical

tools for error estimation, to estimate the local error in a

nonlinear transient solution.

2. In most computer systems, the fast memory allocated to a run

must be set at the beginning of the run.

Therefore, the philosophy of the adaptive process described here is to

obtain the most accuracy for a given set of computational resources. As

will be seen in the examples, this philosophy is quite effective. By using

an adaptive mesh, it is generally possible to obtain a solution of

comparable accuracy with far fewer elements, and hence, less computational

resources than with a fixed mesh.

The effort described here is focused on adaptivity in the context of

the nonlinear transient analysis of shells with explicit time integration.

This is the most commonly used method for problems characterized by severe,

dynamic deformations. In addition, we carefully consider the demands of

vectorization, since most current supercomputers use this technique for

accelerating computations. From the viewpoint of the programmer,

vectorization is like a SIMD (single instruction, multiple data stream)

computer. Blocks of elements must be arranged so that they all do the same

operation; consequently, recursive calculations and conditional statements



-4-

are quite detrimental. One of the major competitors of the next generation

of supercomputers, the CONNECTION machine, is also a SIMD computer, so these

limitations may be with us for a long time. This has many ramifications in

the choice of adaptivity and its implementation.

The paper is organized as follows. Section 2 describes the basic

method used for the nonlinear transient analysis of shells. Section 3

describes the type of adaptivity used, the reasons for the choice, and its

implementation. Section 4 describes the data structure. Section 5

describes some results obtained with this method, with the emphasis on

comparisons with nonadaptive meshes. Conclusions and further discussions

are given in Section 6.
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2. FINITE ELEMENT FORMULATION

The shape of the midsurface is described in this finite element model

by

x i - NI(J) Xil (2.1)

where xi are the coordinates of node I and NI(J) are the bilinear

isoparametric shape functions. Lowercase subscripts designate Cartesian

components, and uppercase subscripts designate node numbers; repeated

indices are summed over their range, 4 for uppercase, 3 for lowercase.

The shape functions NI( ) are functions of the reference variables

i - 1,2, also written as i " 2 " and they are given by

N - 1( + i (1 + i17) (2.2)

where I and a, 're the coordinates of the nodes at the corners of the

reference domain defined by -1 - : 1, -1 - n : 1. Note that unless a mesh

of these elements is quite refined, they provide a rather poor model for the

curved surface of a shell. In a regular mesh on a cylindrical shell, these

elements are in fact all flat, and any interaction between flexure and

membrane response only occurs at the nodes. Furthermore, in a region of

large curvature, this model can deteriorate even more severely with very

large angles between adjacent elements. However, before discussing this

further, the basic mechanics of this finite element formulation will be

described.
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In the formulation, two types of coordinates are used in addition to

the global Cartesian coordinates:

1. for each element, an element coordinate system (x,y,z) with

base vectors el' 22 , and e3 is defined so that e, and e2 are

tangent to the midsurface and rotate with the element;

2. for each node, a triad b i is defined so that it rotates with

the node, with b3 normal to the midsurface of the shell in the

undeformed configuration.

Whereas in the original formulation of Belytschko, Lin, and Tsay (1984)

the original orientation of bi was arbitrary, it is used here to locate new

nodes created in the adaptive process and therefore must initially be

approximately normal to the midsurface of the shell.

The deformation of the element is governed by the Mindlin-Reissner

hypothesis, which allows transverse shear but requires the normal to remain

straight, so the velocity of a generic point in the shell is given in terms

of the velocity of the midsurface v and the angular velocity w byby

m
v- vM - z (e3 X s)I (2.3)

where z, by the definition of the element coordinates, is the distance of a

point from the midsurface.

The velocity field is given by



-7-

v - N1 vii (2.4)

- N (2.5)

The strain rates (velocity strains or stretching) are given in terms of

the nodal velocities in the element coordinate system by

Am

A 8y M A a
d - ^x + z - (2.6a)

xx ax ax

A A

A aVm A a

d - -- - z A (2.6b)
Y ay ay

A A r A A 1
A qy t m  av A a$ ae

2d -AX + I + Z (2.6c)xy ay ax ay ax

A

A avm  A

2d - A-- + 0 (2.6d)

A BvM
2d -- ' - 6 (2.6e)

yz ay
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Since the element uses one-point quadrature, the strains are evaluated at a

single point, the origin of the reference plane which is given by = - 0.

The velocity strains at this point are given by

A P A A

dxx - Bxi VxI + z (Bxi vxi + Bx xi) (2.7a)

SA # A

dy - ByI V I + z (ByI v I - ByI WxI) (2.7b)

A A

dxy - ByI I + Bxi VyI

' A P ^ A A

+ z (By I V xi + B xi vy I - B XI WxI + ByI WyI) (2.7c)

A A A

2dxz - BxI Vz + s I Wyl (2.7d)

A A

2dyz - ByI VzI " sI WxI (2.7e)

where
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s - N I (0) - [1,1,1,11 (2.8a)

8N1 (0) A . . . .
Bxl A T [Y24 ' Y3 1 ' Y4 2 ' Y1 3] (2.8b)

B aN(0) 1 ( A A (2.8c)

By = ay T A x4 2, x1 3 , x24 , x3 1 ]

.A A
Bil y ^7 ^, ^7 (nyN (2.8d)
B' 2AL A AT) A y~-(nxI - Cx,,) n,- n C x, N

x,7 7x, 1, 1

A A A A A A A A

C - (x, ny,, + y'7 nx, - ,y, nx,, )  (2.8e)

X - xI -x (2 .8f)

YiJ " Y l YJ (2.8g)
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and n is the normal to the shell.

The nodal forces are computed from the stresses by one-point

quadrature, which yields

fxI - A (B Ixx + BxI mxx + B Ixy + B y ) (2.9a)

fyI - A (By, 6yy + By, myy + Bxl 6xy + BxI mxy) (2.9b)

-fzl A (ByI 
6yz. + BX1 6xz)  (2.9c)

m - -A (ByI my + BXI mxy + SI 6yz) (2.9d)

my I - A (B MXX + ByI mxy + sI 6xz) (2.9e)

where

h/2 A A
6ij h/2 a ij dz (2.9f)



h/2 A ^
mj - -h a ij z dz ( 2 .9g)

ij h/2

and h is the thickness.

The one-point quadrature element is rank-deficient, so it is associated

with spurious singular modes, as described in Belytschko, Lin, and Tsay

(1984). Their control is also described therein.

The incremental work is computed in each element by

AWin t - f At (dn+h)T (,n + n+ l) dV (2.10a)e

where

dT - [dxx ' dy d dxz d yzI (2.10b)

T _axx, ayy, axy, axz, ayz (2.10c)

and At is the time increment; superscripts indicate the time step. This

quantity is used to check stability and as a criterion for mesh adaptation

in some of the studies.
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3. FISSION AND FUSION ADAPTIVITY

The type of adaptivity which has been adopted here is an h-type, where

the mesh is selectively refined in parts of the domain during the evolution

of the solution. In addition, the refined elements are fused when they are

no longer needed, so that computational power is not wasted on those parts

of the domain which no longer undergo a changing deformation pattern. The

motivation for including the fusion process is that in nonlinear transient

problems, certain parts of the domain in effect "freeze", so that coarse

meshes can capture their behavior effectively.

For the purpose of explaining the rationale for our use of h-type

adaptivity, it is worthwhile to summarize other types of adaptivity.

Noor and Babuska (1987) describe the four forms of mesh enrichment as:

1. h-method: Grid intervals are either increased by combining

elements or decreased by splitting elements into smaller

quadrilaterals.

2. r-method: Node relocation.

3. p-method: Element trial functions are replaced by higher

degree polynomials where more accuracy is needed.

4. h-P method: A simultaneous application of both the h- and p-

methods.

Node relocation (r-method) has the following disadvantages in nonlinear

shell problems:

1. In history-dependent materials, such as elastic-plastic

materials, the migration of material particles between

elements, which is a by-product of the r-method, is difficult

to treat and always results in material history diffusion.
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2. It is difficult to design algorithms which keep the nodes on a

smooth surface.

3. The extra accuracy achievable by the r-method is quite

limited, since the number of nodes and elements is fixed.

The advantage of the r-method over the other methods is that it does

not require a special data structure. In fact, any transient finite element

program already contains all data required for r-adaptivity. However, this

advantage is outweighed by the disadvantages listed above.

The p-method has the following disadvantages:

1. It is difficult to compute an effective lumped mass matrix for

higher order elements, but without a lumped mass, explicit

time integration is quite inefficient.

2. The critical time step for explicit time integration decreases

markedly as the order of the element increases for both

consistent and lumped masses.

3. Higher order elements are associated with the appearance of an

optical mode, and these add to the noise of a solution; see

Belytschko and Mullen (1978).

The major disadvantage of the h-adaptive procedure is that it involves

the creation and destruction of nodes and elements and therefore requires an

elaborate data structure, since the interrelationships of old and new nodes

and elements must also be known. However, this disadvantage is basically

surmountable, whereas those of the other methods are not.

For these reasons, the h-method has been chosen as the mesh-enrichment

strategy in our formulation. The aim of this method is to allocate elements

to regions of the mesh where mesh refinement is necessary, in order to

obtain the most accuracy for a given amount of computational resources. In

the h-method mesh-enrichment strategy, a single quadrilateral element may be
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refined or split into four equal-sized smaller elements, or four elements

may be derefined or combined into a single element. We shall refer to the

refinement of a single "parent" quadrilateral element into four smaller

"sibling" quadrilateral elements as "fission" and to the derefinement of

four siblings into their parent as "fusion". These processes are

illustrated in Fig. 1.

For the purpose of organization, any group of four elements which is

created by fission is called a "molecule". The original elements in a mesh

are called "patriarchs" or generation-O, and they cannot be fused. The

elements generated by adaptivity are called "descendants".

There are three aspects to the implementation of fission-fusion

adaptivity:

1. criteria for fission and fusion (the evaluation of these

criteria is called an assessment or a judgment);

2. the initial conditions for element and nodal variables at the

nodes and elements which are created by fission;

3. the initial conditions for element and nodal variables at the

nodes and elements which are created by fusion.

Five parameters have been established to control element allocation:

1. FACTOR - fraction of elements to be considered for fission.

2. NJUMP - frequency of mesh assessment in time steps.

3. NBEGA - time step of the initial fission-fusion assessment.

4. NCYCLE - number of consecutive assessments in which an element

must be chosen for fission (fusion) before it can be

fissioned (fused).

5. MAXGEN - maximum number of descendant generations.
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Fission-Fusion Criteria

Two criteria have been adopted for making judgments on fission-fusion:

1. an incremental internal work criterion;

2. a discontinuity criterion based on the angle between two

adjacent elements.

According to the incremental internal work criterion, the elements

which are fissioned are those which sustain the largest increment in

internal work. Because this variable usually has an oscillatory character

in an explicit solution of a transient problem, the judgment is made on the

basis of the total incremental work done over a specified number of time

steps, ranging from 5 to 20. For the purpose of comparing elements of

different sizes, the total incremental energy in a molecule is used as the

criterion. Thus, fusion is indicated whenever the incremental work in a

group of four elements which has been created by a previous fission is

smaller than the incremental energy in cther molecules.

Even with the filtering that is brought about by taking the incremental

work over five steps, the incremental work criterion can lead to an

oscillatory pattern of fission followed by fusion in many molecules in a

transient process. Therefore, a time delay has been included which prevents

fission or fusion unless it is indicated by two consecutive judgments. This

type of retardation of the adaptive process appears to be needed in explicit

treatments of nonlinear structural dynamics with adaptive meshes if

excessive "churning" between fission and fusion is to be avoided.

The second criterion we have studied is based on the change in angle

between two elements. The basis for this criterion is that one of the

largest sources of errors is the inability of the piecewise bilinear

elements to capture the correct shape and moment and curvature fields of the

shell as the deformation localizes. Severe deformation in shells is usually
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associated with large curvatures; since the bilinear element cannot

represent large curvatures directly, it is associated with severe "kinking"

between elements, which can be detected by monitoring the angle between

elements. For those elements which satisfy the angle criterion for fission,

both elements on each side of the line are subdivided into four elements.

An advantage of the angle criterion over the incremental work criterion

is that it can be applied to more than one level of fission-fusion without

need of additional parameters. The incremental work criterion, if it is to

be used for two levels of fission-fusion, requires the specification of a

ratio of incremental work in the refined elements to that in the coarse

elements at which the second level of fission is initiated.

Since it is difficult to relate any of these criteria to the ultimate

accuracy of a solution, one technique we have used is to simply specify the

maximum number of elements and use the criteria to select where those

elements are placed. In this procedure, we start with a uniform mesh which

contains the maximum number of elements allowed. After five time steps, the

elements are fissioned or fused according to the magnitudes of the

amplitudes of their error indicators until the maximum number of elements is

obtained.

Fission Process

When an element is fissioned next to an unfissioned element, as shown

in Fig. 2, nodes are created adjacent to unsplit sides, so they cannot be

handled by the usual equations of motion. In order to correctly handle

compatibility, these nodes must be treated as "slave" nodes which are driven

by the adjacent "master" nodes. In addition, in order to introduce a good

representation of the shell as quickly as possible, it is useful to use the
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nodal vectors b. for an approximation of the curved Kirchhoff-Love surface-t

on which the new nodes are placed.

The procedure for setting the initial configuration of the nodes is as

follows. The surface is approximated by

4

x - Xii NI + S ji (3.1)

J-1

where

S - (012 Hi( ) + 021 H2 ( )) n i J Ijj (N1 + N 2 ) (3.2)

where Hi(I) are the Hermite interpolants, so that H I,(j) - 61j and 01, is

the slope of the Kirchhoff-Love surface relative to the bilinear

approximation, which is obtained by

J 9 -(b3 -IJ)/LIJI (3.3)

The initial velocities of the nodes are obtained from the bilinear

interpolation (2.1). The initial element variables for the elements are
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taken from the parent element. The mass matrix is reassembled after

fission. Nodes which are formed at sides which are continuous sides of the

adjacent elements are considered slave nodes. All other new nodes are

master nodes. Thus, an interior node is always a master node, but if only a

single, isolated element undergoes fission, all other new nodes are slave

nodes.

Fusion Process

In the fusion process, no new nodes are created; the velocities and

displacements at the nodes which remain are assumed to be continuous during

fusion. The number of elements is reduced from four to one; the historical

state variables (stress components and yield) are taken to be the area-

weighted average of the parent element stresses. State variables such as

the yield stress cannot be adjusted so they remain completely consistent.

For example, even if all of the elements in a molecule are plastic, because

of the convexity of the yield function, the yield stress of the fused

element will always be elastic (unless all four elements are along the same

linear part of a yield surface). However, this does not present

difficulties in an explicit computer program. Note that if all four

elements are elastic, the convexity of the yield surface guarantees that the

fused element is elastic; also, it is never possible for the state in a

fused element to lie outside the yield surface.
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4. DATA STRUCTURE

An important ingredient of a general-purpose h-adaptive program is the

data structure. In designing a data structure, compromises must be made to

conserve storage and avoid excessive computation time. We viewed these

trade-offs from the perspective of implementation on a vectorized computer,

where recursive operations must be avoided as much as possible. Therefore,

we adopted the viewpoint that recursive calculations with a low fixed limit

could be permitted during assessments but not during the routine time

integration process. The upshot of this viewpoint is that the regular data

structure is retained for the mesh, so element computations require no

recursive computations; subsidiary information that allows retracing the

mesh to its parent configuration may involve recursive calculations for its

interpretation. The latter is important because in an h-adaptive algorithm,

fission splits a single parent quadrilateral into four smaller sibling

quadrilateral elements. In fusion, it is necessary to retrace this process

in reverse. These relationships among elements can be expressed most

compactly through a hierarchal or tree-type data structure. However, since

fission-fusion only occurs every 10 to 100 time steps, this does not

compromise vectorization much.

In describing data structures for h-adaptive procedures, it is best to

begin with Rheinboldt and Mesztenyi (1980), who introduced a general labeled

tree structure for two-dimensional finite element meshes which compactly

describes the history and current state. Their algorithm emphasizes a

minimization of storage and makes extensive use of recursive programming

techniques. However, the traditional finite element data structure has been

abandoned. The distinction between nodes and elements is blurred in their

method since they deal with points. For example, an undivided quadrilateral
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is designated by its centerpoint number. Upon refinement, the node created

at the center of the parent quadrilateral is designated by this same

centerpoint number. Thus, a number associated with a point may refer to

either an element or a node at different stages of the adaptive process.

Since emphasis is placed on the minimization of storage, extensive use of

the tree structure is made to recalculate nodal coordinates, element

interrelationships, and nodal interrelationships (master-slave). Thus,

substantial effort is expended in tree travel, which is essentially a

recursive process and does not lend itself to vectorization. Furthermore,

as a consequence of the abandonment of the traditional finite element data

structure, recursive calculations are needed even during routine element

calculations, which we feel has detrimental effects on a vectorized

computer.

Devloo, Oden, and Stroubelis (1987) present an augmented data

structure, consisting of the traditional nodal coordinate and element

connectivity arrays supplemented by a NELCON (neighboring element

connectivity) array. Their data structure is constructed with the tacit

assumption of the I-irregular rule: neighboring elements canbe at most one

generation apart, or, in other words, each element borders on at most two

other elements on any side. Thus, a NELCON array is an array with

dimensions 8 x NELE, where NELE is the number of elements. Refinement of an

element in the data structure of Devloo, Oden, and Stroubelis (1987) results

in a group consisting of four new elements. Their data structure also

requires recursive calculations in the routine calculations.

The data structure described here differs from the preceding two in

that the full finite element data structure is retained in conjunction with

some additional data which is chosen so that no recursive calculations are

necessary except during fusion. This data structure closely parallels the
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traditional finite element data structure but is nonetheless a hierarchal

data structure. The cornerstones of this data structure are the "forest of

trees" concept employed by Ewing (1986) and the l-irregular rule described

by Bank and Sherman (1980); see also Bank, Sherman, and Weiser (1983).

Since it retains the traditional finite element connectivity array, this

data structure can be readily implemented into existing finite element

codes.

The data commences with an initial coarse mesh of elements called

generation-O or patriarchs. This initial mesh must be adequate for

describing the shape of the structure, loading, material properties, and

boundary conditions. The patriarchs are never fused. A "family" is defined

as a set of elements which are descendants from a generation-0 element

(patriarch).

The generation of new elements leads to siblings ("children") of

various generations. Note that the parents are hermaphrodites: only one

parent is needed to generate children.

The reproduction or fission process is governed by the widely used 1-

irregular rule, which provides a reasonable limit for mesh gradation. If

mesh gradation is too severe, the constraints imposed by the coarse elements

on their refined neighbors would preclude their full effectiveness. The

reason for this is that if a fine set of elements lies adjacent to a coarse

element, the velocities of the nodes shared by the two must all be linearly

related. Even with the 1-irregular gradation, the adaptivity loses

effectiveness when a single fissioned element is surrounded by four

unfissioned elements, since then only one new unconstrained node is created.

For this reason, nonhermaphroditic generation algorithms which require two

adjacent parents to generate 4, 6, or 8 children may prove more effective.
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The relationship between families is expressed by the NPTCON

(neighboring patriarch connectivity) array. The dimensions of this array

are NPATCH x 4, where NPATCH is the number of patriarchs. The columns of

the NPTCON array identify the four neighboring patriarchs, so NPTCON (j,i),

i - 1 to 4, give the numbers of the four adjacent patriarchs. If side i of

a patriarch lies on the boundary of the model, then NPTCON (j,i) - 0.

The following additional arrays are needed:

1. NGENRA(i) - number of ancestor generations for element i.

2. NGENRD(i) - number of descendant generations for element i.

3. NPAREN(i) - the element which is the immediate parent of

element i.

4. NSBLNG(j) - a dynamically allocated array which lists all

siblings.

5. NCHILD(i) - a pointer array which identifies the starting

address of the siblings of element i in the NSBLNG

array.

All of the arrays, except the fourth, are of length NELE.

Distinctions among different node types are recorded in the NFLAG(i)

array, i - I to NNODE, where NNODE is the number of nodes. For slave nodes

NFLAG - -1, for boundary nodes NFIAG - 0, for master nodes which are not on

a boundary NFLAG - +1. The MASTER array identifies the two nodes which are

masters of each slave node. The dimensions of the MASTER array are

NNODE x 2. The accelerations, velocities, and displacements are calculated

using the average of the values at the two master nodes. It is important to

note that this simplified treatment of slave nodes arises from the

1-irregular rule.

Figure 3 summarizes the numbering conventions employed in this data

structure.
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Rheinboldt and Mesztenyi (1980) use labels for each point (node or

element) to determine whether a side of an element borders elements of the

same family or not. These labels need not be stored for our data structure.

Instead, the position of the element within the sibling group is used to

convey this information; that is, sibling 1 translates to Rheinboldt and

Mesztenyi's (1980) label (-1, -1), sibling 2 corresponds to (+1, -1),

sibling 3 corresponds to (+1, +1), and sibling 4 corresponds to (-1, +1).

The example shown in Figs. 4 and 5 illustrates the role of each of the

aforementioned arrays in the data structure. Figure 4 gives the original

mesh.

Assume that element 1 has been chosen for fission into elements 5 to 8

by an error criterion. Element 1 is a generation-0 element (patriarch). A

patriarch can always be fissioned. The neighboring patriarchs are contained

within the NPTCON array.

If side I of element 1 lies on the boundary, NPTCON(5,I) - 0, so a

boundary node N (NFLAG(N) - 0) is automatically generated at the midpoint of

that side. For the sides of element 1 which border other patriarchs, a test

must be performed to ascertain whether slave nodes are already present

(NGENRD (NPTCON(5,I)) > 0) or whether new nodes need to be created (NGENRD

(NPTCON(5,I)) - 0). If a slave node is present, its node number must be

determined via tree travel and the connectivity array, and its status must

be upgraded to master node (NFLAG(N) - +1). If a new node must be created,

a new node number must be generated.

The new mesh and its associated data structure are shown in Fig. 5.

Now suppose that element 7 in the refined mesh has been chosen for

fission by some error criterion. It can be readily observed that the

fission of element 7 would result in the violation of the irregular-I rule.

The algorithm determines that element 7 is not suitable for fission in the
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following manner. Within the children of parent element 1, element 7 is in

the third sibling position. Sides 1 and 4 of sibling 3 border on siblings 2

and 4, respectively. A check of the 1-irregular rule by the fission of

element 7 does not need to be done for these two sides. Sides 2 and 3, in

this case, border on neighboring families. This is determined by the family

tree of element 7 - 3 (sibling position) - +1 +1 (labels). Since the tree

is only one entry long, there obviously is no change of sign down the two

columns of regularity numbers. Therefore, both sides 2 and 3 border on

neighboring families. The families are identified by the NPTCON array,

NPTCON(I,2) - 2 and NPTCON(I,3) - 3. These families must have descendants

with family trees -1 +1 (labels) - 4 (sibling position) and +1 -1 - 2,

respectively. These descendants don't exist. Therefore, fission must be

performed on elements 2 and 3 before element 7 can be fissioned.
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5. NUMERICAL EXAMPLES

All numerical examples described in this section were performed on a

Harris 800 computer in single precision. A single-precision word consists

of 11 significant digits (base 10) on this computer.

Since closed-form solutions are not available for nonlinear transient

problems, two types of comparisons are used for the adaptive solutions:

1. numerical results obtained by finer meshes;

2. experimental results.

The first example concerns a clamped beam which is impulsively loaded

over the center portion as shown in Fig. 6. Using symmetry, half of the

beam is modelled by m x n quadrilateral plate elements, with m elements

across the 1.2 in. width and n elements over the 5 in. half-span. The x and

z components of the translations and rotations about the x and z axes are

constrained. The problem is solved using an incremental flexure energy

criterion and a single level of refinement.

Figure 7 shows the midspan deflection obtained by two fixed meshes and

an 8- to 10-element adaptive mesh. As can be seen, the adaptive mesh is

quite close to the 20-element fixed mesh for the first 0.5 msec, and it

matches the maximum displacement quite well. Subsequently, it diverges

somewhat from the fine-mesh solution.

Figure 8 shows the pattern of mesh adaptivity. The first elements to

be fissioned are those beneath the impulsive load; the location of the

fissioned elements then moves back and forth between the center and the

support, like the hinge in the rigid-plastic solution, and finally fixes

itself at the clamped wall.

The profiles of the beam obtained by a fine fixed mesh and the adaptive

mesh are compared in Fig. 9. As can be seen, the profiles compare quite
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well, except at the final time, 0.49 msec, when the node at the adaptive

mesh at x - 3.0 in. deviates markedly.

This beam was resolved with a 2 x 20 fixed mesh and a 16-element

adaptive mesh. The midspan deflection is shown in Fig. 10. In this case,

the adaptive mesh corresponds very closely with the fixed mesh, even though

it required only 40% of the elements. The potential savings in

computational resources is even greater, because, in the adaptive mesh, half

of the elements could employ a time step twice as large as that used in the

fixed mesh.

A more complex example for the adaptive mesh is provided by the

cylindrical panel problem shown in Fig. 11. An initial velocity of 5650

in/sec is applied to the 3.08 in. x 10.205 area indicated in Fig. 11. The

panel is simply supported at its ends and clamped at the sides. An Ilyushin

plasticity model, which is expressed in terms of the resultant moments and

membrane forces, mij and JiJ, is used in the computation.

The problem was solved with both multi-level and two-level adaptivity

(patriarchs were allowed to fission once).

We first give the results for two-level adaptivity.

Two adaptive meshes were used in the two-level computation: a 96-

element mesh based on a 4 x 8 mesh of molecules, and a 218-element mesh

based on an 8 x 16 mesh of molecules. The results are compared to uniform

fixed meshes with 32, 96, 128, 218, and 512 elements.

The displacement time histories for the coarse adaptive mesh are

compared to three of the fixed-mesh results in Figs. 12 and 13 at points A

(z - -6.28 in.) and B (z - -9.42 in.) which are indicated in Fig. 11.

Remarkably, the 53-element adaptive result almost coincides with the 128-

element fixed-mesh result for the first 0.4 msec. Subsequently, the results
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of the two meshes deviate somewhat, and the adaptive results become slightly

rough, which is caused by excessive churning of the fission-fusion process.

Note that the fixed-mesh results with fewer elements deviate substantially

from the finest fixed-mesh results.

The displacements for the fine adaptive mesh are compared to the fixed

meshes in Figs. 14 and 15 at points A and B, respectively. Here the 218-

element adaptive mesh corresponds quite closely with the 512-element uniform

fixed mesh and exhibits marked improvement over a 200-element fixed mesh.

Deformed mesh plots for the finer adaptive mesh are shown at various

times in Fig. 16. Here the incremental energy is used for the fission-

fusion criterion. It can be seen that after 0.0125 msec, the crown settles

downward like a plateau and the fissioning process migrates laterally

towards the line where the curvature is maximum. During this time, the

crown moves down in a frozen plateau-like state. After that, the crown

develops a convex curvature when viewed from above, and the elements in the

crown are again fissioned. The end of the simulation again exhibits

churning of fission-fusion, which is a tendency that needs to be fixed: it

is probably due to the fact that the incremental work is quite small in the

later stages because most of the deformation has taken place, so the

incremental work in molecules is quite uniformly distributed, allowing the

fission-fusion process to be triggered by small oscillations in the

solution.

Experimental results have been obtained for this shell by Morino,

Leech, and Witmer (1971), who report a maximum deflection of 1.24 in. at

point A. The finest fixed and adaptive meshes yield maximum deflections of

1.20 and 1.17 in., respectively. These results show that even two-level

adaptivity is quite successful.
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The deformed profiles are shown in Figs. 17 and 18 for the 512-element

fixed mesh and the 218-element adaptive mesh. The development of a hinge

line at about x - 2.0 in. and the attendant fission process are quite

clearly seen in Fig. 17. Figure 18 shows a cross section in the y-z plane

of symmetry. The fusion process which takes place while the crown is moving

like a flat plateau, followed by the fission which develops when the crown

curves, is quite clearly seen.

The results for the multi-level adaptivity solution of the cylindrical

panel problem are given next. The interelement angle criterion is used in

this case.

TI'' deformed meshes are shown in Fig. 19. It should be noted that

initially the largest element rotations occur for those elements on the near

end (z - 0) of the shell. This is a clamped support, and a hinge line forms

immediately. The first few mesh plots indicate that the elements are indeed

being reallocated to this region. Later in the simulation, as the hinge

line forms at x - 2.0 in., most of the refinement focuses there because

little additional deformation occurs. In contrast to the results based on

the incremental energy criterion, all elements in the center of the panel

are fused at the end.

A comparison between calculated displacement time histories at points A

and B, using adaptive and fixed meshes and experimental results, is given in

Figs. 20 and 21. The tremendous improvement which is attainable with multi-

level refinement is quite clear. The results for the peak displacement of

node A correspond almost exactly with the experiment.

In this multi-level solution, three descendant generations were used.

Fission-fusion judgments were made every 40 time steps, and since the

duration of the simulation was 0.6 msec, it occurred 86 times (no judgement

MMOMMEMi
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was made until the 80th step). Fission or fusion was performed only when

indicated by two consecutive judgments.

The third example is a hollow, cylindrical column which is subjected to

a compressive axial load. This problem is of interest because it exhibits

both global and local buckling, the latter resulting in buckling of the

cross section. Numerical results and experimental results are reported for

this problem by Kennedy, Belytschko, and Lin (1986). The problem parameters

are given in Table 1.

The cylinder is loaded by prescribing an upward velocity of 500 in/sec

to the bottom nodes of the model, with the top fixed. To trigger the

lateral buckling mode, an imperfection given by

Ax - 0.01 sin 2irz

where I is the length of the column and z is the coordinate along the axis

of the column, is added to the x-coordinate of all nodes.

The problem is solved with multi-level adaptivity and the angle error

criterion. The pattern of adaptivity is shown in Fig. 22. Initially, the

fission process is only one level and occurs at the eventual extrema of the

buckling wave. The fission process then coalesces at the nodes of the

lateral buckling mode, where they attain a higher level. Some fission also

takes place at the compressive buckles at the top and bottom of the column.

The displacements of two points in the adaptive'mesh are compared to

corresponding points in a finer fixed mesh in Fig. 23. The results show

good agreement.
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6. CONCLUSIONS

An adaptive procedure based on an h-scheme has been developed for the

nonlinear transient analysis of shells. Refinement is implemented through

fission of an element into four elements, and coarsening, through fusion of

four elements into one. Suitable criteria for fission and fusion and the

formulation of the fission and fusion processes are also described.

Two criteria have been found useful for the bilinear quadrilateral

elements commonly used in transient analysis by explicit time integration:

1. the incremental internal work criterion;

2. the relative angle criterion, which is a measure of the

deviation of the bilinear surface from the Kirchhoff-Love

surface associated with the nodal orientations.

The angle criterion appears to be the more effective of the two, since

it is readily applicable to multi-level adaptivity. The incremental energy

criterion requires arbitrary parameters when extended to multi-levels, since

the incremental work performed depends on element size.

It would be desirable to supplement the angle criterion since deviation

of the bilinear approximation is not the only source of errors. For

example, another source of errors is the one-point quadrature and the

perturbation hourglass control. To reduce errors, those olements which

deform primarily in the hourglass mode should be refined. Similarly, a

criterion which identifies errors due to high stress gradients would be

desirable. However, such supplementary criteria have the drawback that

weights must be assigned to these different criteria in using them for

adaptivity. A unified approach which accounts for all of these errors would

therefore be desirable.
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To avoid excessive churning of the fission-fusion process, time delays

had to be incorporated in the judgment process. Thus, fission and fusion

are executed only when indicated by two or more consecutive judgments.

Nevertheless, churning becomes a problem with the incremental work criterion

in the later stages of impulsively loaded problems when the work on the

system decreases.

The h-adaptive procedure is limited in its ability to focus on the

subdomains of maximum deformation by the fact that the parent element

configuration is fixed. Therefore, hinge lines which occur at angles

relative to the mesh lines may not be captured effectively. However, the h-

adaptive procedure appears to be the best compromise between simplicity and

effectiveness in the solution of nonlinear structures by explicit methods.

The results we have obtained show that these adaptive schemes are

capable of achieving substantial improvements in accuracy for a given

computational effort. Generally, an adaptive mesh is capable of achieving

the same level of accuracy as a fixed mesh with less than half of the

computational resources. The fission process tends to take place in the

subdomains where the maximum deformation occurs.
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Table 1

Specification of Column Buckling Problem

Column diameter D - 13.0 in.

Wall thickness t - 1.0 in.

Column length 160.0 in.

Material Properties

Young's modulus E - 2.8 x 107 psi

Density p - 8.31 x 10 4 lb-sec 2/in4

Poisson's ratio v - 0.25

Yield stress a - 35000 psi
7

Prescribed displacement loading

6 - 500 in/sec

Plastic behavior is modelled by a ten-segment piecewise

linear approximation to the stress-strain curve and the
Von Mises yield criterion.

Plastic moduli (psi) Plastic zrc.s (psi)

(1) 6.60 x 105 4.75 x 104

(2) 4.50 x 105 5.65 x 104

(3) 4.00 x 105 6.45 x 104

(4) 2.75 x 105 7.00 x 104

(5) 2.50 x 105 7.50 x 104

(6) 2.25 x 105 7.95 x 104

(7) 2.20 x 105 8.35 x 104

(8) 1.75 x 105 8.70 x 104

(9) 1.50 x 105 9.00 x 104

(10) 1.25 x 105 1.15 x 106
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Figure 16
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Figure 16 (Continued)
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Figure 1.9
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